According to analysis of the state of art, the main problems to be solved in order to improve the performance of prosthetic hands are
1) lack of sensory information gives to the amputee;
2) lack of “natural” command interface;
3) limited grasping capabilities;
4) Unnatural movements of fingers during grasping.
In order to solve these problems, we are developing a biomechatronic hand, designed according to mechatronic concepts and intended to replicate as much as possible the architecture and the functional principles of the natural hand.
The first and second problems can be addressed by developing a “natural” interface between the peripheral nervous system (PNS) and the artificial device (i.e., a “natural” neural interface (NI) to record and stimulate the PNS in a selective way. The neural interface is the enabling technology for achieving ENG-based control of the prostheses, i.e., for providing the sensory connection between the artificial hand and the amputee. Sensory feedback can be restored by stimulating in an appropriate way user’s afferent nerves after characterization of afferent PNS signals in response to mechanical and proprioceptive stimuli. The “biomechatronic” design process described above is illustrated in the scheme.
1) lack of sensory information gives to the amputee;
2) lack of “natural” command interface;
3) limited grasping capabilities;
4) Unnatural movements of fingers during grasping.
In order to solve these problems, we are developing a biomechatronic hand, designed according to mechatronic concepts and intended to replicate as much as possible the architecture and the functional principles of the natural hand.
The first and second problems can be addressed by developing a “natural” interface between the peripheral nervous system (PNS) and the artificial device (i.e., a “natural” neural interface (NI) to record and stimulate the PNS in a selective way. The neural interface is the enabling technology for achieving ENG-based control of the prostheses, i.e., for providing the sensory connection between the artificial hand and the amputee. Sensory feedback can be restored by stimulating in an appropriate way user’s afferent nerves after characterization of afferent PNS signals in response to mechanical and proprioceptive stimuli. The “biomechatronic” design process described above is illustrated in the scheme.
For more details visit http://www.seminarsonly.com
2 comments:
Plz, send me a complete seminar and images on my e-mail id > mangesh.marwadi@gmail.com
plz send me all the relevant information including the images on the topic"Biomechatronic Hand"
on my e -mail id <shrimalir@gmail.com
Post a Comment